Using Reachability Properties of Logic Program for Revising
Biological Models

Xinwei Chai, Tony Ribeiro, Morgan Magnin, Olivier Roux, Katsumi Inoue

Laboratoire des Sciences du Numérique de Nantes, France
National Institute of Informatics, Tokyo

September 4, 2018

Outline

Modeling and Computation

Network biology
Predictive models
Data mining
Graph theory
Simulation

Biological
Experimental Applications
Approaches
PP Bioengineered livers
Inter-cellular signaling
Environmental toxicology
Cell cycle
Infectious diseases

DNA microarrays
Proteomics
Real-lime mass spectroscopy

Outline

Modeling and Computation

Network biology
Predictive models
Data mining
Graph theory
Simulation

Biological
Experimental Applications
Approaches
PP Bioengineered livers
Inter-cellular signaling
Environmental toxicology
Cell cycle
Infectious diseases

DNA microarrays
Proteomics
Real-lime mass spectroscopy

LFIT [3]

Revision

Process Scheme

Biological a priori knowledge

a4
Real system Temporal properties
|
|
|
| \
¥
Partial observation LFIT Model Some reachability

AN

Model Checking

Modeling framework

Modelings

Boolean Network Logic Program
<
f(a) = -b a(t+1) « —b(t)
f(b) =a b(t+ 1) « a(t)

(0,0) —— (1,0)

.

(0,1) —— (1,1)

State transition graph

Reachability analysis

Reachability problem

Given a BN, from initial state o, does
there exist a transition sequence that
reaches the target state w?

Given a state transition graph, from initial

state o, does there exist a pathway
towards the target state w?

Reachability of global states | EF(a;, b — computationally difficult
=—> Reachability of local states

Reachability analysis

Difficulties and solution

o State space grows exponentially with the number of automata

o Traditional model checkers e.g. Mole! and NuSMV? fail
global search — time out and/or out of memory

o Static analysis: avoid global search, at the cost of precision
— A balance between time-space performance and conclusiveness

o Paulevé et al. introduced LCG (Local Causality Graph) [1, 2] for static analysis

o Implementation: Pint

o Efficient (beats many traditional model checkers) but

@ Usually not conclusive when the density of the biological network increases

http://www.lsv.fr/~schwoon/tools/mole
2http://nusmv.fbk.eu

http://www.lsv.fr/~schwoon/tools/mole
http://nusmv.fbk.eu

Reachability analysis

Local Causality Graph (LCG)

Start with target state w — Find transitions reaching w — Find new target states to
fire those transitions — - -+ Recursion --- — End with initial state «

@ Goal-oriented structure
@ Formed by recursive updates

@ Avoid global search in state transition graphs

Reachability analysis

Example of LCG

Initial state oo = (ao, b1, o, db, €0), target state w = a1

Rules: aj < b1 A c1, a1 + eq,
b1 — do, Cl < d1, d1 < b1

Small circles stand for transition nodes, squares for state nodes

Reachability analysis

Example of LCG

Initial state oo = (ao, b1, o, db, €0), target state w = a1

Rules: a; <+ b1 A cy, a1 + e,
b1 «— do, Cl < d1, d1 «— b1

0

Small circles stand for transition nodes, squares for state nodes

Reachability analysis

Example of LCG

Initial state oo = (ao, b1, o, db, €0), target state w = a1

Rules: a7 < b1 A c1, a1 + e,
b1 «— do, Cl < d1, d1 «— b1

@ e

Small circles stand for transition nodes, squares for state nodes

Reachability analysis

Example of LCG

Initial state oo = (ao, b1, o, db, €0), target state w = a1

Rules: a; <+ b1 A cy, a1 + e,
b1 «— do, Cl < d1, d1 «— b1

Small circles stand for transition nodes, squares for state nodes

Reachability analysis

Example of LCG

Initial state oo = (ao, b1, o, db, €0), target state w = a1

Rules: a7 < b1 A c1, a1 + e,
b1 «— do, Cl < d1, d1 «— b1

Small circles stand for transition nodes, squares for state nodes

Reachability analysis

Example of LCG

Initial state o = (ap, b1, o, do, €p), target state w = ay

Rules: a; «+ b1 A c1, a1 « e,
b1 «— do, Cl — dl, d1 «— b1

Small circles stand for transition nodes, squares for state nodes
r'(a1) = r'(e1) V (r'(b1) A r'(c1))

Reachability analysis

Example of LCG

Initial state o = (ap, b1, o, do, €p), target state w = ay

Rules: a; + b1 A ci, a1 « e,
b1 < do, C1 < dl, d1 «— b1

Small circles stand for transition nodes, squares for state nodes
r'(a1) = r'(do) A r'(c1)

Reachability analysis

Example of LCG

Initial state o = (ap, b1, o, do, €p), target state w = ay

Rules: a; + b1 A ci, a1 « e,
b1 < do, Cl < d1, d1 < b1

Small circles stand for transition nodes, squares for state nodes
r'(a1) = r'(do) A r'(d1)

Reachability analysis

Example of LCG

Initial state o = (ap, b1, o, do, €p), target state w = ay

Rules: a; + b1 A ci, a1 « e,
b1 «— do, Cl — dl, d1 «— b1

Small circles stand for transition nodes, squares for state nodes
r'(a1) = r'(d1)

Reachability analysis

Example of LCG

Initial state o = (ap, b1, o, do, €p), target state w = ay

Rules: a; + b1 A ci, a1 « e,
b1 «— do, C1 < dl, d1 < b1

Small circles stand for transition nodes, squares for state nodes
r'(a1) =r'(b1) =r'(d) =1

Reachability analysis

Example of LCG

Initial state oo = (ao, b1, o, db, €0), target state w = a1

Rules: aj < b1 A c1, a1 + eq,
b1 — do, Cl < d1, d1 < b1

Small circles stand for transition nodes, squares for state nodes

Reachability analysis

Example of LCG

Initial state oo = (ao, b1, o, db, €0), target state w = a1

Rules: aj < b1 A c1, a1 + eq,
b1 — do, Cl < d1, d1 < b1

Small circles stand for transition nodes, squares for state nodes

Reachability analysis

Algorithm for Reachability

© 000

Input: A logic program P, an initial state «, a target state w and a max number
of iterations k

Output: reach(w) € {False, True, Inconclusive}

Construct the LCG £ = LCG(P, o, w)
Try to remove all cycles and prune useless edges from ¢

Try to prove unreachability of w in £ using pseudo-reachability reach’(¢,w) and
return False if reach’(¢,w) = False
Try at most k times

o 0 — ¢

o Simplify each OR gate such that ¢’ is a LCG with only AND gates

o If there remain cycles:

@ Back to step (4)
o Generate all trajectory that starts with « in £’ using ASP

@ If a trajectory t ending with w is found, return True

return Inconclusive

Reachability analysis

ASPReach

In an LCG, link a; — o — b; can be translated as:
node(’a’,’1’,1). node(’b’,’1’,2). parent(1,2).

Core code:
prior(N1,N2) :- parent(N2,N1). %Rule 1
prior(N1,N3) :- prior(N1i,N2), prior(N2,N3). %Rule 2
prior(N1,N2) :-

node(P1,S1,N1), node(P2,S2,N2),
node(P2,83,N3), parent(N1,N3),
init(P2,S3), S21=S3, P11=P2. YRule 3

N for node, P for component, S for state

Rule 3: in the LCG, one branch contains a; — o — bg, another branch contains by, i
by € a, aj is to be reached before reaching b

Reachability analysis

Example

Initial state a = ag, bo, cp, target state w = ¢
Rules: a3 < bg, b1 < cp,c1 < a1 A by

ai O bo O %]
:
b1 @ %]

a > b means a appears in the sequence before b
Rule 1 & 2 = bp>ai>c,c> b >c
Rule 3 = a>b

The only admissible order is a1 — b1 — 1

Benchmark

ity analysis

Traditional model checkers: Mole NuSMV — memory-out
Pure static analyzer: Pint [1]
Small example: A-phage, 4 components
Big examples: TCR (T-Cell Receptor, 95 components) and

EGFR (Epidermal Growth Factor Receptor, 106 components)

Model A-phage TCR EGFR

Tnputs 7 3 3

Outputs 4 5 12
Total tests 2% x4 =64 23 x5 =40 213 % 12 = 908, 304

Analyzer Pint PR AR Pint [PR_| AR Pint PR AR
Reachable 36(56%) | 38(50%) | 38(59%) 16(40%) 64,282(65.4%) 74,268(75.5%)
Inconclusive 2(3%) 0(0%) 0(0%) 9,986(10.1%) 0(0%)
Unreachable 26(41%) 24(60%) 24,036(24 5%)
Total time <1s 7s | 0.85s | 40s 9h50min [15min31s [3h46min

PR=PermReach, AR=ASPReach

Model Revision

Collaboration with LFIT

o If the model is consistent with a priori knowledge
o Do nothing

o If not consistent

Reachable [Unreachable
Knowledge Rk Uk
Inferred model R, U,
Inconsistency (problem) R =Rk N U Ui =R NUk
Keep consistent with Uk Rk
Operation GeneralizationO Specialization()
Add transitionsx | Delete transitionsQ)

where set R and U are consisting of pairs of form (o, w)

Model Revision

Definitions

Specialization of a transition

By adding elements in the body of a transition, it is possible to change a reachable
state to an unreachable one

Generalization of a transition

By deleting elements in the body of a transition, it is possible to change an
unreachable state to a reachable one

Model Revision

Main Algorithm

@ Input: an Automata Network A, reachable set Ry, unreachable set Uk

@ Output: modified Automata Network A or & if not revisable

@ Construct the LCGs for the elements in Rk and Uk, collect inconsistent instances
H / !
in set Ry and U}

@ Specialize the transitions to make elements in U,’< unreachable, if not possible,
return &

© Generalize the transitions to make elements in R} reachable, if not possible,
return &

Q Return A

Model Revision

Specialization

@ Input: a logic program P, an unsatisfied element (o, w), a reachable set Re, an
unreachable set Un

o Output: modified logic program P or & if not revisable

QO Rev + {w}

@ For each R s.t. h(R) = Rev, for each R € {R"|R" € Is(R) AB(I,J) €
E, st. 3R € PU{R"}\ {R},h(R"") € J,b(R"") € I}
o If P" + P\ {R}U{R’}, unreachable(P’, o, w) and P’ satisfies all previous properties,
return P’

@ Rev + b(R) with h(R) = Rev and back to step 2

@ There is no revision for (a,w), return @

16 /21

Model Revision

Generalization

@ Input: a logic program P, an unsatisfied element (o, w), a reachable set Re, an
unreachable set Un

o Output: modified logic program P or & if not revisable

QO Rev + {w}

@ For each R s.t. h(R) = Rev, for each R’ € Ig(R)
o If P+ P\ {R}U{R’}, reachable(P’, a,w) and P’ satisfies all previous properties,
return P’

© Rev + b(R) with h(R) = Rev and back to step 2

@ There is no revision for (a,w), return @

Model Revision

Example

Rules: a; < b1, a1 + di A cp, b1 < co, c1 < bo
Initial state: a = (ag, by, co, do)
Uk = {(a,b1)7(a7dl)}v Rk = {(Ot, 31)}

L= {{((L 31)7 (av b1)7 (av dl)}v {(av bl)}7 {(av dl)}}

Start from {(«, b1)} and {(a, d1)}

b1 < ¢p can be specialized to by < ¢y A a1 to make b; unreachable
a1 < di A ¢p can only be generalized to a; < ¢g as d; € Uk

Check the reachability of (a, a1): reachable, finish

Model Revision

Example

Rules: a; < b1, a1 + di A cp, b1 < co, c1 < bo
Initial state: a = (ag, by, co, do)
Uk = {(a,b1)7(a7dl)}v Rk = {(Ot, 31)}

o——{bi} - »o——{ %] @
[

L= {{((L 31)7 (av b1)7 (av dl)}v {(av bl)}7 {(av dl)}}

Start from {(«, b1)} and {(a, d1)}

b1 < ¢p can be specialized to by < ¢y A a1 to make b; unreachable
a1 < di A ¢p can only be generalized to a; < ¢g as d; € Uk

Check the reachability of (a, a1): reachable, finish

Model Revision

Example

Rules: a; < b1, a1 + di A cp, b1 < co, c1 < bo
Initial state: a = (ag, by, co, do)
Uk = {(a,b1)7(a7dl)}v Rk = {(Ot, 31)}

L= {{((L 31)7 (av b1)7 (av dl)}v {(av bl)}7 {(av dl)}}

Start from {(«, b1)} and {(a, d1)}

b1 < ¢p can be specialized to by < ¢y A a1 to make b; unreachable
a1 < di A ¢p can only be generalized to a; < ¢g as d; € Uk

Check the reachability of (a, a1): reachable, finish

Model Revision

Example

Rules: a; < b1, a1 + di A cp, b1 < co, c1 < bo
Initial state: a = (ag, by, co, do)
Uk = {(a,b1)7(a7dl)}v Rk = {(Ot, 31)}

L= {{((L 31)7 (av b1)7 (av dl)}v {(av bl)}7 {(av dl)}}

Start from {(«, b1)} and {(a, d1)}

b1 < ¢p can be specialized to by < ¢y A a1 to make b; unreachable
a1 < di A ¢p can only be generalized to a; < ¢g as d; € Uk

Check the reachability of (a, a1): reachable, finish

Model Revision

Conclusion

@ Given background knowledge (reachability properties), the learned models are
evaluated via LCG

o Using classical specialization/generalization, the models learned by LF1T are
revised while keeping consistent with the observation (time series data)

Ongoing work:
@ Application in biological networks, e.g. mammalian circadian clock modeling

= Exploit biologists knowledge to deal with few available data

19/21

Model Revision

References

B

B

Maxime Folschette, Loic Paulevé, Morgan Magnin, and Olivier Roux.
Sufficient conditions for reachability in automata networks with priorities.
Theoretical Computer Science, 608:66—83, 2015.

Loic Paulevé, Morgan Magnin, and Olivier Roux.

Static analysis of biological regulatory networks dynamics using abstract
interpretation.

Mathematical Structures in Computer Science, 22(04):651-685, 2012.

Tony Ribeiro and Katsumi Inoue.
Learning prime implicant conditions from interpretation transition.
In Inductive Logic Programming, pages 108-125. Springer, 2015.

Model Revision

Thank you!

	Modeling framework
	Reachability analysis
	Model Revision

