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Modeling framework

Modelings

Boolean Network Logic Program
<
f(a) = -b a(t+1) « —b(t)
f(b) =a b(t+ 1) « a(t)

(0,0) —— (1,0)

.

(0,1) —— (1,1)

State transition graph



Reachability analysis

Reachability problem

Given a BN, from initial state o, does
there exist a transition sequence that
reaches the target state w?

Given a state transition graph, from initial

state o, does there exist a pathway
towards the target state w?

Reachability of global states | EF(a;, b — computationally difficult
=—> Reachability of local states




Reachability analysis

Difficulties and solution

o State space grows exponentially with the number of automata

o Traditional model checkers e.g. Mole! and NuSMV? fail
global search — time out and/or out of memory

o Static analysis: avoid global search, at the cost of precision
— A balance between time-space performance and conclusiveness

o Paulevé et al. introduced LCG (Local Causality Graph) [1, 2] for static analysis

o Implementation: Pint

o Efficient (beats many traditional model checkers) but

@ Usually not conclusive when the density of the biological network increases

http://www.lsv.fr/~schwoon/tools/mole
2http://nusmv.fbk.eu


http://www.lsv.fr/~schwoon/tools/mole
http://nusmv.fbk.eu

Reachability analysis

Local Causality Graph (LCG)

Start with target state w — Find transitions reaching w — Find new target states to
fire those transitions — - -+ Recursion --- — End with initial state «

@ Goal-oriented structure
@ Formed by recursive updates

@ Avoid global search in state transition graphs



Reachability analysis

Example of LCG

Initial state oo = (ao, b1, o, db, €0), target state w = a1

Rules: aj < b1 A c1, a1 + eq,
b1 — do, Cl < d1, d1 < b1

Small circles stand for transition nodes, squares for state nodes
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Example of LCG
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Reachability analysis

Example of LCG

Initial state oo = (ao, b1, o, db, €0), target state w = a1

Rules: a7 < b1 A c1, a1 + e,
b1 «— do, Cl < d1, d1 «— b1

@ e

Small circles stand for transition nodes, squares for state nodes
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Example of LCG
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Reachability analysis

Example of LCG

Initial state o = (ap, b1, o, do, €p), target state w = ay

Rules: a; «+ b1 A c1, a1 « e,
b1 «— do, Cl — dl, d1 «— b1

Small circles stand for transition nodes, squares for state nodes
r'(a1) = r'(e1) V (r'(b1) A r'(c1))



Reachability analysis

Example of LCG

Initial state o = (ap, b1, o, do, €p), target state w = ay

Rules: a; + b1 A ci, a1 « e,
b1 < do, C1 < dl, d1 «— b1

Small circles stand for transition nodes, squares for state nodes
r'(a1) = r'(do) A r'(c1)
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Example of LCG
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Reachability analysis

Example of LCG

Initial state oo = (ao, b1, o, db, €0), target state w = a1

Rules: aj < b1 A c1, a1 + eq,
b1 — do, Cl < d1, d1 < b1

Small circles stand for transition nodes, squares for state nodes



Reachability analysis

Algorithm for Reachability

© 000

Input: A logic program P, an initial state «, a target state w and a max number
of iterations k

Output: reach(w) € {False, True, Inconclusive}

Construct the LCG £ = LCG(P, o, w)
Try to remove all cycles and prune useless edges from ¢

Try to prove unreachability of w in £ using pseudo-reachability reach’(¢,w) and
return False if reach’(¢,w) = False
Try at most k times

o 0 — ¢

o Simplify each OR gate such that ¢’ is a LCG with only AND gates

o If there remain cycles:

@ Back to step (4)
o Generate all trajectory that starts with « in £’ using ASP

@ If a trajectory t ending with w is found, return True

return Inconclusive



Reachability analysis

ASPReach

In an LCG, link a; — o — b; can be translated as:
node(’a’,’1’,1). node(’b’,’1’,2). parent(1,2).

Core code:
prior(N1,N2) :- parent(N2,N1). %Rule 1
prior(N1,N3) :- prior(N1i,N2), prior(N2,N3). %Rule 2
prior(N1,N2) :-

node(P1,S1,N1), node(P2,S2,N2),
node(P2,83,N3), parent(N1,N3),
init(P2,S3), S21=S3, P11=P2. YRule 3

N for node, P for component, S for state

Rule 3: in the LCG, one branch contains a; — o — bg, another branch contains by, i
by € a, aj is to be reached before reaching b



Reachability analysis

Example

Initial state a = ag, bo, cp, target state w = ¢
Rules: a3 < bg, b1 < cp,c1 < a1 A by

ai O bo O %]
:
b1 @ %]

a > b means a appears in the sequence before b
Rule 1 & 2 = bp>ai>c,c> b >c
Rule 3 = a>b

The only admissible order is a1 — b1 — 1



Benchmark

ity analysis

Traditional model checkers: Mole NuSMV — memory-out
Pure static analyzer: Pint [1]
Small example: A-phage, 4 components
Big examples: TCR (T-Cell Receptor, 95 components) and

EGFR (Epidermal Growth Factor Receptor, 106 components)

Model A-phage TCR EGFR

Tnputs 7 3 3

Outputs 4 5 12
Total tests 2% x4 =64 23 x5 =40 213 % 12 = 908, 304

Analyzer Pint PR AR Pint [ PR_| AR Pint PR AR
Reachable 36(56%) | 38(50%) | 38(59%) 16(40%) 64,282(65.4%) 74,268(75.5%)
Inconclusive 2(3%) 0(0%) 0(0%) 9,986(10.1%) 0(0%)
Unreachable 26(41%) 24(60%) 24,036(24 5%)
Total time <1s 7s | 0.85s | 40s 9h50min [ 15min31s [ 3h46min

PR=PermReach, AR=ASPReach



Model Revision

Collaboration with LFIT

o If the model is consistent with a priori knowledge
o Do nothing

o If not consistent

Reachable [ Unreachable
Knowledge Rk Uk
Inferred model R, U,
Inconsistency (problem) R =Rk N U Ui =R NUk
Keep consistent with Uk Rk
Operation GeneralizationO Specialization()
Add transitionsx | Delete transitionsQ)

where set R and U are consisting of pairs of form (o, w)



Model Revision

Definitions

Specialization of a transition

By adding elements in the body of a transition, it is possible to change a reachable
state to an unreachable one

Generalization of a transition

By deleting elements in the body of a transition, it is possible to change an
unreachable state to a reachable one




Model Revision

Main Algorithm

@ Input: an Automata Network A, reachable set Ry, unreachable set Uk

@ Output: modified Automata Network A or & if not revisable

@ Construct the LCGs for the elements in Rk and Uk, collect inconsistent instances
H / !
in set Ry and U}

@ Specialize the transitions to make elements in U,’< unreachable, if not possible,
return &

© Generalize the transitions to make elements in R} reachable, if not possible,
return &

Q Return A



Model Revision

Specialization

@ Input: a logic program P, an unsatisfied element (o, w), a reachable set Re, an
unreachable set Un

o Output: modified logic program P or & if not revisable

QO Rev + {w}

@ For each R s.t. h(R) = Rev, for each R € {R"|R" € Is(R) AB(I,J) €
E, st. 3R € PU{R"}\ {R},h(R"") € J,b(R"") € I}
o If P" + P\ {R}U{R’}, unreachable(P’, o, w) and P’ satisfies all previous properties,
return P’

@ Rev + b(R) with h(R) = Rev and back to step 2

@ There is no revision for (a,w), return @

16 /21



Model Revision

Generalization

@ Input: a logic program P, an unsatisfied element (o, w), a reachable set Re, an
unreachable set Un

o Output: modified logic program P or & if not revisable

QO Rev + {w}

@ For each R s.t. h(R) = Rev, for each R’ € Ig(R)
o If P+ P\ {R}U{R’}, reachable(P’, a,w) and P’ satisfies all previous properties,
return P’

© Rev + b(R) with h(R) = Rev and back to step 2

@ There is no revision for (a,w), return @



Model Revision

Example

Rules: a; < b1, a1 + di A cp, b1 < co, c1 < bo
Initial state: a = (ag, by, co, do)
Uk = {(a,b1)7(a7dl)}v Rk = {(Ot, 31)}

L= {{((L 31)7 (av b1)7 (av dl)}v {(av bl)}7 {(av dl)}}

Start from {(«, b1)} and {(a, d1)}

b1 < ¢p can be specialized to by < ¢y A a1 to make b; unreachable
a1 < di A ¢p can only be generalized to a; < ¢g as d; € Uk

Check the reachability of (a, a1): reachable, finish
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Model Revision

Conclusion

@ Given background knowledge (reachability properties), the learned models are
evaluated via LCG

o Using classical specialization/generalization, the models learned by LF1T are
revised while keeping consistent with the observation (time series data)

Ongoing work:
@ Application in biological networks, e.g. mammalian circadian clock modeling

= Exploit biologists knowledge to deal with few available data

19/21
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